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SUMMARY

Lung stem cells are instructed to produce lineage-
specific progeny through unknown factors in their
microenvironment. We used clonal 3D cocultures of
endothelial cells and distal lung stem cells, bron-
chioalveolar stem cells (BASCs), to probe the
instructive mechanisms. Single BASCs had bronchi-
olar and alveolar differentiation potential in lung
endothelial cell cocultures. Gain- and loss-of-
function experiments showed that BMP4-Bmpr1a
signaling triggers calcineurin/NFATc1-dependent
expression of thrombospondin-1 (Tsp1) in lung
endothelial cells to drive alveolar lineage-specific
BASC differentiation. Tsp1 null mice exhibited defec-
tive alveolar injury repair, confirming a crucial role for
the BMP4-NFATc1-TSP1 axis in lung epithelial differ-
entiation and regeneration in vivo. Discovery of this
pathway points to methods to direct the derivation
of specific lung epithelial lineages from multipotent
cells. These findings elucidate a pathway that may
be a critical target in lung diseases and provide tools
to understand the mechanisms of respiratory dis-
eases at the single-cell level.

INTRODUCTION

Adult tissue stem cells reside in specialized niches containing

supporting cells and factors that control stem cell survival,

self-renewal, and differentiation (Jones and Wagers, 2008; Mor-
440 Cell 156, 440–455, January 30, 2014 ª2014 Elsevier Inc.
rison and Spradling, 2008). Lung epithelial repair is governed by

stem/progenitor cell populations in distinct niches along the

proximal-distal axis (e.g., Rawlins et al., 2009; Rock et al.,

2011; Otto, 2002). Crosstalk between lung stem/progenitor cells

and their niche is likely pivotal for maintaining the balance of

stem and differentiated cells. Defects in such interactions may

lead to acute respiratory distress syndrome, bronchopulmonary

dysplasia, chronic obstructive pulmonary disease, idiopathic

pulmonary fibrosis, and cancer. However, little is known about

the supporting cells affecting lung regenerative potential or the

precise mechanisms regulating differentiation and repair.

Bronchioalveolar stem cells (BASCs) are adult murine distal

lung epithelial stem cells that reside in the bronchioalveolar

duct junction, where the airways open to the alveolar space.

BASCs coexpress the bronchiolar club cell (Clara) marker,

CCSP (club cell [Clara] secretory protein [Scgb1a]), and the

alveolar type 2 cell (AT2) marker, SPC (prosurfactant protein C)

(Kim et al., 2005). Fluorescence-activated cell sorting (FACS)-

enriched BASCs self-renew and differentiate in 2D culture sys-

tems and proliferate in response to bronchiolar and alveolar

lung injury (Dovey et al., 2008; Kim et al., 2005; Zacharek et al.,

2011). Lineage-tracing studies showed that BASCs can give

rise to alveolar epithelial cells in vivo (Rock et al., 2011; Tropea

et al., 2012). Multiple stem/progenitor cell populations in the

adult distal lung, including BASCs, club cells, AT2 cells, and

integrin-a-6-expressing alveolar progenitors, may contribute to

homeostasis and repair (Barkauskas et al., 2013; Chapman

et al., 2011; Rawlins et al., 2009; Rock et al., 2011; Tropea

et al., 2012). Clonal analysis of these cells has not been feasible,

limiting understanding of lung stem cells.

3D Matrigel-based culture systems mimicking the niche

have advanced the lung stem cell field. Distal lung epithelial
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stem/progenitor cells required support cells such as fibroblasts

to form epithelial colonies (Kim et al., 2005; Lee et al., 2013;

McQualter et al., 2010; Teisanu et al., 2011). The distal lung is

highly vascularized, and numerous studies show an important

role for the vasculature in lung development (DeLisser et al.,

2006; Jakkula et al., 2000). Endothelial-derived Mmp14 is crucial

for AT2 cell proliferation during lung regeneration (Ding et al.,

2011). Although these studies have laid an important frame-

work, it is not known how lineage-specific differentiation of

lung stem cells is regulated by stroma. Here, we identify a

bone morphogenetic protein 4 (BMP4)-nuclear factor of acti-

vated T cell c1 (NFATc1)-thrombospondin-1 (TSP1) signaling

axis in endothelial cells that is critical for alveolar specification

of BASC differentiation.

RESULTS

Lung Endothelial Cells Support Stem Cell Properties of
BASCs
Given the intimate spatial relationship between lung epithelium

and endothelial cells, we asked whether endothelial cells sup-

port 3D epithelial growth. CD31�CD45�EpCAM+Sca1� cells

(enriched for AT2 cells, AT2 hereafter) or CD31�CD45�EpCAM+

Sca1+ cells (enriched for putative BASCs, BASCs hereafter) from

b-actin-GFP mice were cocultured with primary mouse lung

endothelial cells (LuMECs) (Figure 1A; Figures S1A and S1B

available online). After 14 days, epithelial colonies were ob-

served in AT2 cell and BASC cocultures (Figure 1B). Limiting
Figure 1. LuMECs Support BASC Self-Renewal and Differentiation In V

(A) Schematic of FACS strategy to enrich for AT2 cells and BASCs from b-actin-

CD31-positive endothelial cells were excluded. EpCAM-positive epithelial cells

Sca1-negative cells were AT2 cells.

(B) Representative images of GFP colonies from 3D coculture of AT2 cells (left)

colony, arrow points to alveolar colony, and asterisk indicates bronchioalveolar c

(C) Self-renewal of AT2 cells and BASCs in 3D LuMEC cocultures. Primary colon

subsequent (3�, 4�, 5�, 6�) colony formation. Colony forming efficiency is the num

presented are the mean of three independent experiments with triplicate wells. E

(D) Representative GFP images of alveolar colonies from AT2 cells (top, left), and

Hematoxylin and eosin staining (H&E; middle) and IF (bottom) for CCSP (red), SPC

AT2 cells. Scale bars, 100 mm.

(E) Quantification of each colony type from AT2 cell (n = 687) or BASC cocultures (n

were mixed. The mean percentage of total colonies per well represented by each

mean of seven independent experiments with triplicate wells. Error bars indicate

(F) Subcutaneous cotransplantation of AT2 cells or BASCs mixed with LuMEC/M

show that only BASCs coinjected with LuMECs formed epithelial structures with

epithelial structures; AT2 cells, n = 9/9 mice injected did not yield epithelial str

bar, 100 mm.

(G) Schematic of clonal serial passage analysis. The 1� colonies were plated for 2

time PCR (H and J). Data shown are from 20 individual colonies per type analyze

(H) Representative quantitative real-time PCR analysis validating expression of

colonies. B1 and B2, primary bronchiolar colony; A1 and A2, primary alveolar colon

Data presented are the mean of triplicate wells. Error bars indicate SD (**p < 0.0

(I) Representative GFP images of 2� colonies from passage of each colony type.

asterisk indicates bronchioalveolar colony. Scale bars, 500 mm (top): H&E (middle

sections from subcutaneous transplantation of cells from BASC-derived bronchio

mice did not yield epithelial structures), or bronchioalveolar colonies (right) (n = 9

(J) Representative quantitative real-time PCR analysis in tertiary colonies as in (H

colony; 3�BA1 and 3�BA2, tertiary bronchioalveolar colony. All are normalized to

(**p < 0.001).

See also Figure S1.

442 Cell 156, 440–455, January 30, 2014 ª2014 Elsevier Inc.
dilution assays showed that LuMECs supported BASC self-

renewal (Figure S1C); BASCs were passaged multiple times in

the presence of LuMECs without decreased colony-forming

efficiency, whereas AT2 cell colony formation decreased with

passage (Figures 1C and S1C).

Importantly, LuMECs supported BASC differentiation into

multiple epithelial lineages. Three colony types arose in BASC/

LuMEC cocultures: bronchiolar-like structures (bronchiolar col-

onies hereafter) with cells positive for CCSP; alveolar-like struc-

tures (alveolar colonies hereafter) expressing SPC; and mixed

morphology structures (bronchioalveolar colonies hereafter,

see below) containing CCSP-positive and SPC-positive cells

(Figures 1B, 1D, and 1E). In contrast, AT2 cells only formed alve-

olar structures expressing SPC (Figures 1B, 1D, and 1E). Quan-

titative real-time PCR analysis confirmed the expression of

CCSP and SPC in BASC colonies, yet no detectable expression

of CCSP in AT2 cell colonies (Figure S1D). The alveolar type 1

(AT1) cell marker, T1a, and the ciliated cell marker, FoxJ1,

were detected in BASC cultures, whereas AT2 cultures only ex-

pressed SPC and T1a (Figure S1E). Bronchiolar colonies also

contained ciliated cells positive for acetylated-tubulin and goblet

cells expressingMUC5AC (Figure S1F), but there was no expres-

sion of these markers in alveolar colonies (Figure S1G; data not

shown). Mixed colonies contained cells positive for CCSP,

acetylated-tubulin, MUC5AC, or SPC, and CCSP- and SPC-

dual-positive cells (Figure S1H). We have termed mixed colonies

‘‘bronchioalveolar colonies.’’ LuMECs also supported BASC dif-

ferentiation after subcutaneous cotransplantation. BASCs, but
itro and In Vivo

GFP mice and 3D coculture with LuMECs. CD45-positive hematopoietic and

were selected. From these selections, Sca1-positive cells were BASCs, and

or BASCs (right) with LuMECs after 14 days. Arrowhead points to bronchiolar

olony. Scale bar, 500 mm.

ies (1�) were dissociated, and GFP+ cells were replated for secondary (2�) and
ber of colonies formed/number of cells plated per well as a percentage. Data

rror bars indicate SD.

bronchiolar, alveolar, and bronchioalveolar colonies from BASCs (top, right).

(green), and DAPI (blue) show BASC differentiation into club (Clara) cells and

= 842). Of colonies, 25.4%were bronchiolar, 53.5%were alveolar, and 21.1%

type of colony is shown. n, number of colonies scored. Data presented are the

SD.

atrigel. H&E (top) and IF (bottom) for CCSP (red), SPC (green), and DAPI (blue)

cells positive for CCSP, SPC, or both; BASCs, n = 7/8 mice injected formed

uctures. Images are representative of three independent experiments. Scale

� or 3� colony formation (I), and half of the cells were used for quantitative real-

d over four independent experiments.

SPC (white bars) and CCSP (black bars) in cells from two different individual

y; BA1 and BA2, primary bronchioalveolar colony. All are normalized toGapdh.

01).

Arrowhead points to bronchiolar colony, arrow points to alveolar colony, and

) and IF (bottom) analysis for CCSP (red), SPC (green), and DAPI (blue) in tissue

lar (left) (n = 3/8 mice formed epithelial structures), alveolar (middle) (n = 15/15

/9 mice generated epithelial structures). Scale bar, 100 mm.

). 3�B1 and 3�B2, tertiary bronchiolar colony; 3�A1 and 3�A2, tertiary alveolar

Gapdh. Data presented are the mean of triplicate wells. Error bars indicate SD
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not AT2 cells, coinjected with LuMECs formed tube-like struc-

tures lined by epithelial cells expressing CCSP, SPC, or both

(Figure 1F). These data suggested that LuMECs support BASC

self-renewal and differentiation into bronchiolar and alveolar

lineages in vitro and in vivo.

The derivation of multiple lineages in 3D cocultures could be a

result of multipotent stem cell differentiation or the outgrowth of

a mixture of cell types. BASCs from GFP or dsRed mice were

mixed and cocultured with LuMECs. Colonies that arose were

green or red, suggesting their clonal nature (Figure S1I). To

further test multipotency, individual colonies were tested for

secondary colony formation and differentiation (Figure 1G).

Bronchioalveolar colonies gave rise to all three colony types

with repeated passage, whereas bronchiolar colonies generated

only bronchiolar colonies, and alveolar colonies only formed

alveolar colonies (Figures 1H–1J, S1K, and S1L). Bronchioalveo-

lar colonies retained efficient colony formation compared

to bronchiolar colonies, and alveolar colonies had limited

passaging capacity (Figures S1J and S1M). Bronchioalveolar

colonies from BASC/LuMEC cocultures also exhibited multipo-

tent differentiation capacity in vivo because they produced

numerous lung epithelial structures consisting of acetylated-

tubulin-, MUC5AC-, CCSP-, SPC-, or dual-positive CCSP/SPC

cells after subcutaneous cotransplantation (Figures 1I, S1N,

and S1O). Bronchiolar colonies generated rare epithelial struc-

tures, whereas alveolar colonies were unable to form epithelial

structures (Figure 1I).

The ability of single cells to give rise to multiple lineages is a

stem cell hallmark that has not been demonstrated in lung 3D

cocultures. Single BASCs from GFP mice were cocultured with

LuMECs and dsRed-labeled ‘‘helper cells’’ (irradiated EpCAM-

positive lung epithelial cells) (Figure 2A). Single BASCs devel-

oped colonies of all three types, with bronchioalveolar colonies

the predominant type (80%) (Figures 2B and 2C). Immunofluo-

rescence (IF) confirmed the multilineage differentiation of these

bronchioalveolar colonies (Figure 2D) with the continued ability

to differentiate after multiple passages (Figures 2E and 2F).

Endothelial Cells Govern BASC Differentiation in an
Organ-Specific Manner
Organ-specific endothelium has been implicated in other stem

cell niches, so we isolated primary liver endothelial cells

(LiMECs) (Figure S2) and cocultured them with BASCs. BASC/

LiMEC cocultures had enhanced bronchiolar colony formation

and reduced alveolar colony formation compared to BASC/
Figure 2. Single BASCs Develop Multilineage Lung Organoids

(A) Schematic of ‘‘helper cell’’ 3D cocultures. Single GFP+ BASCs were mixed w

LuMECs.

(B) Limiting dilution assay in helper cell 3D cocultures. The percentage of wells wit

red; AT2 in blue) is shown. n = 180, 105, and 90 wells with 1, 10, or 100 cells plate

with multiplicate wells. Error bars indicate SD (**p < 0.001; ***p < 0.0001).

(C) Representative merged fluorescent images (GFP, dsRed) from single GFP+ B

(D) Representative IF in a bronchioalveolar colony derived from a single BASC wi

tubulin (green), and DAPI (blue) (middle), and with CCSP (red), MUC5AC (green),

(E) Representative merged image (GFP, dsRed) of single BASC-derived seconda

(F) Quantification of colony types from single BASC-derived bronchioalveolar co

[2�BASCs] scored) or from subsequent serial passage (n = 475 3�BASCs, n = 465

the mean of three independent experiments with four individual colonies. Error b
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LuMEC cocultures (Figures 3A–3C). Passaged bronchioalveolar

colonies also exhibited markedly expanded bronchiolar colony

differentiation at the expense of alveolar colonies when cocul-

tured with LiMECs (Figure 3D). Bronchioalveolar colonies arising

from BASC/LuMEC cocultures were subcutaneously injected

with LuMECs or LiMECs. LiMEC coinjections yielded primarily

bronchiolar structures in contrast to the three different types of

lung epithelial structures formed in LuMEC coinjections (Figures

3E and 3F), suggesting a specific requirement for lung endothe-

lium in BASC differentiation.

TSP1 in Endothelial Cells Regulates BASC
Differentiation
The necessity of lung endothelial cells in BASC differentiation

suggested that endothelial factors are important for this process.

TSP1, an angiogenesis inhibitor, is highly expressed in lung

endothelial cells (Adams and Lawler, 2004; Chen et al., 2000;

Lawler, 2002) and is upregulated developmentally when alveolar

epithelial cells proliferate and differentiate (Iruela-Arispe et al.,

1993; O’Shea and Dixit, 1988). Because TSP1 expression was

significantly higher in LuMECs versus LiMECs (Figure 3G), we

examined its role in BASC differentiation.

Lung injury models can identify proteins necessary for lung

regeneration and differentiation. LuMECs were isolated at

various times after naphthalene or bleomycin treatment, in vivo

models of bronchiolar and alveolar epithelial injury, respectively,

to examine Tsp1 expression. Tsp1 mRNA was significantly

reduced in LuMECs 3 days after naphthalene treatment when

regeneration of club cells occurs and restored 14 days after

injury when regeneration is largely completed (Figure 4A). In

contrast, bleomycin treatment led to higher Tsp1 expression in

LuMECs 14 days after injury when alveolar epithelial repair is

underway (Figure 4A).

To gain insight into the necessity of TSP1 as a regulator of

BASC differentiation, we tested Tsp1-deficient LuMECs in 3D

cocultures. LuMECs were isolated from Tsp1�/� mice (Lawler

et al., 1998). Tsp1�/� LuMECs modestly increased colony num-

ber in cocultures (Figure S3A). Strikingly, BASC/Tsp1�/� LuMEC

cocultures produced 3.2-fold more bronchiolar colonies and

3.5-fold fewer alveolar colonies than BASC/Tsp1+/+ LuMEC

cocultures (Figures 4B and 4C). CCSP and SPC mRNA levels

validated the enhanced bronchiolar differentiation phenotype

with Tsp1�/� LuMECs (Figure 4D). Altered differentiation was

not due to a lineage-specific proliferation defect because bron-

chiolar or alveolar colonies cocultured with Tsp1�/� LuMECs
ith irradiated EpCAM-positive dsRed lung epithelial cells and cocultured with

h colony formation from 1, 10, or 100 GFP+ cells for each population (BASCs in

d, respectively. Data presented are the mean of four independent experiments

ASC helper cell cocultures. Scale bars, 500 mm.

th CCSP (red), SPC (green), and DAPI (blue) (top), with CCSP (red), acetylated-

and DAPI (blue) (bottom). Scale bars, 100 mm.

ry colonies. Scale bar, 500 mm.

lonies (n = 14 bronchioalveolar colonies tested, n = 384 secondary colonies

4�BASCs, n = 452 5�BASCs). n, number of colonies scored. Data presented are

ars indicate SD.
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actually showed increased colony numbers (Figure S3B) and

generated bronchiolar or alveolar colonies, respectively, as ex-

pected (Figure 4E). Tsp1�/� BASCs exhibited differentiation

capacity comparable to Tsp1+/+ BASCs (Figure S3I). Normal

bronchiolar and alveolar differentiation was seen when equal

numbers of Tsp1+/+ and Tsp1�/� LuMECs were mixed for cocul-

ture with BASCs (Figures S3C–S3E). Finally, subcutaneous

cotransplantation of bronchioalveolar colonies with Tsp1�/�

LuMECs yielded a significantly higher proportion of bronchiolar

epithelial structures at the expense of alveolar structures

compared with Tsp1+/+ LuMEC coinjections (Figures 4F–4H).

Together, these data strongly suggested that TSP1 functions

as a positive regulator of alveolar differentiation of BASCs

in vitro and in vivo.

It was unclear whether TSP1 played a direct role or if a down-

stream factor affected BASC differentiation. TSP1 constitutes a

major portion (�20%) of total platelet a granule content during

platelet activation (Baenziger et al., 1971; Ganguly, 1971; Lawler

et al., 1978). The addition of Tsp1+/+ platelet releasate (Tsp1+/+

PR) to BASC/Tsp1�/� LuMEC cocultures increased alveolar

colony formation and reduced bronchiolar colonies compared

to controls (Figures S3F–S3H). Purified TSP1 protein from acti-

vated human platelets (native TSP1) added to BASC/Tsp1�/�

LuMEC cocultures similarly increased alveolar colony formation

as compared to treatment with vehicle alone (Figures S3G and

S3H). These data demonstrate that with endothelial cells, TSP1

is sufficient to directly influence BASC alveolar differentiation.

BMP4 Induces BASC Alveolar Differentiation in an
Organ-Specific Manner
TSP1 is a multifunctional glycoprotein with numerous receptors;

however, control of TSP1 expression is not well understood. We

isolated LuMECs at various times after naphthalene or bleomy-

cin injury and analyzed 15 growth factors known to function in

lung development or stem cell cultures (Figures S4A–S4D; data

not shown). Three factors, Hgf, Tgf-b1, and Bmp4, showed a

similar expression pattern as Tsp1; they were downregulated

after naphthalene injury and upregulated after bleomycin injury

(Figures S4A–S4D and 5A, compare to Figure 4A). To investigate

their influence on BASC differentiation, we added recombinant

proteins to BASC/LuMEC cocultures. BMP4 treatment led to
Figure 3. Organ-Specific Endothelial Effects on BASC Differentiation

(A) Representative images fromBASCs coculturedwith LuMECs or LiMECs. Arrow

indicates bronchioalveolar colony. Scale bars, 500 mm (top): H&E (middle) and IF

(B) Quantification of colony types from BASCs cocultured with LuMEC or LiMEC.

diminished alveolar colony compared to BASC/LuMEC cocultures (p < 0.001) (LuM

are the mean of five independent experiments with triplicate wells. Error bars ind

(C) Quantitative real-time PCR for CCSP (black bars) and SPC (white bars) from co

expression in BASC/LiMEC cocultures relative to BASC/LuMEC cocultures (p <

independent experiments with triplicate wells. Error bars indicate SD (**p < 0.001

(D) Representative results from BASC/LuMEC bronchioalveolar colonies passag

(bottom) for CCSP (red), SPC (green), and DAPI (blue) are shown. Arrowhead poin

bronchioalveolar colony. Scale bars, 500 mm (in top) and 100 mm (in bottom).

(E) H&E (top) and IF (bottom) analysis for CCSP (red), SPC (green), and DAPI (blue

bronchioalveolar colonies cotransplanted with LuMECs or LiMECs. Scale bars, 1

(F) Quantitative analysis of epithelial structures from (E). Data presented are the m

indicate SD (*p < 0.01).

(G) Immunoblotting for TSP1 in LuMECs and LiMECs. Tsp1�/� LuMECs were us

See also Figure S2.
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the formation of significantly more alveolar colonies and fewer

bronchiolar colonies, whereas TGF-b1 inhibited BASC colony

formation, and HGF had no effect (Figures 5B and 5C; data not

shown). TSP1 was required for BMP4-induced alveolar differen-

tiation; whenBMP4was added to BASC cocultures with Tsp1�/�

LuMECs, there was no increase in alveolar colonies (Figures 5B

and 5C). BMP4 treatment correlated with activation of Smad1/

Smad5 and Erk1/Erk2 signaling and upregulation of Tsp1

mRNA and protein levels in LuMECs (Figures S4E–S4G, 5D,

and 5E). Tsp1 expression and alveolar differentiation were

reduced after treatment with the BMP inhibitor, Noggin (NOG)

(Figures 5D, 5E, and S4G). The addition of BMP4 to BASC/

LiMEC cocultures did not increase Tsp1 expression, nor did it

increase alveolar colony formation (Figures 5B–5E, S4E, and

S4G). Thus, BMP4 treatment specifically induced Tsp1 in lung

endothelial cells.

We recently identified Tsp1 as a direct target of transcription

factor NFATc1 downstream of calcineurin activation (S.R.,

unpublished data). We asked whether TSP1 induction and

BASC differentiation employed the calcineurin-NFAT signaling

pathway. Calcineurin is a serine/threonine phosphatase acti-

vated by increases in intracellular Ca2+; thus, we monitored cal-

cium influx after BMP4 addition using the Ca2+ indicator Fluo-4

AM. Within 1 min, BMP4 treatment significantly increased the

intensity of Fluo-4 as did VEGF, a known activator of calcineurin

signaling (Figure 5F; Movie S1) (Barkauskas et al., 2013; Hesser

et al., 2004; Minami et al., 2004). To confirm that BMP4 stimu-

lated NFATc1 activation, NFATc1 localization was assessed by

IF. NFATc1 localized to the nucleus in LuMECs within 10 min

after BMP4 treatment and was re-exported to the cytoplasm

after NOG treatment (Figures 5G and S4H). In contrast, NFATc1

expression and localization were unaltered by BMP4 or NOG in

LiMECs (Figure 5G).

Overexpression of a constitutively active NFATc1 (CaNFATc1)

or treatment with ionomycin to activate calcineurin in LuMECs

strongly induced Tsp1 expression, indicating that NFATc1 acts

upstream of Tsp1 (Figures 5E and S4H). Furthermore, addition

of the specific calcineurin inhibitor, cyclosporin A (CsA), to

BASC/LuMEC cocultures significantly abrogated the BMP4-

dependent upregulation of Tsp1 expression andNFATc1 nuclear

translocation (Figures 5D, 5E, and 5G). In the presence of CsA
head points to bronchiolar colony, arrow points to alveolar colony, and asterisk

(bottom) for CCSP (red), SPC (green), and DAPI (blue). Scale bar, 100 mm.

BASC/LiMEC cocultures yielded 3.5-fold increased bronchiolar and 21.5-fold

ECs, n = 663; LiMECs, n = 627). n, number of colonies scored. Data presented

icate SD (**p < 0.001).

cultures. There was a 1.8-fold greater CCSP expression and 19.3-fold less SPC

0.001). All were normalized to Gapdh. Data presented are the mean of three

).

ed for coculture with LuMECs or LiMECs. GFP images (top) and IF analysis

ts to bronchiolar colony, arrow points to alveolar colony, and asterisk indicates

) in tissue sections from subcutaneous coinjection of cells from BASC/LuMEC

00 mm.

ean of two independent experiments with two individual mice wells. Error bars

ed for negative control. b-actin is the loading control.
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Figure 4. Tsp1 Deficiency in LuMECs Inhibits Alveolar Differentiation In Vitro and In Vivo

(A) Quantitative real-time PCR for Tsp1 in LuMECs isolated at indicated time points after naphthalene (left) or bleomycin (right) injury. Corn oil or PBS, diluent

controls for naphthalene or bleomycin, respectively, was used. Tsp1 levels were 10.1-fold less than control during naphthalene injury repair and 2.9-fold higher

(legend continued on next page)
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and BMP4, BASC/LuMEC cocultures yielded more bronchiolar

colonies (Figure 5H). In contrast, BASCs cocultured with

CaNFATc1-LuMECs produced significantly more alveolar col-

onies compared to controls (Figure 5H). CsA did not affect

Smad1/Smad5 and Erk1/Erk2 signaling (Figure S4G).

To define BMP4-induced direct interactions of NFATc1 with

Tsp1 in LuMECs, we assessed NFATc1 binding to the Tsp1

promoter by chromatin immunoprecipitation (ChIP). In BMP4-

treated LuMECs but not LiMECs, NFATc1 ChIP showed signifi-

cant enrichment of Tsp1 (Figure 5I). Binding of NFATc1 on the

Tsp1 promoter was disrupted in LuMECs treated with BMP4

plus NOG (Figure 5I). These data suggest that, in response to

BMP4, NFATc1 activation is sufficient for TSP1-induced BASC

alveolar differentiation.

Bmpr1a Is Required for BMP4-Mediated TSP1 Induction
in LuMECs
To identify the critical BMP receptor (BMPR) for BMP4-mediated

BASC regulation, we tested expression of known BMPRs in

LuMECs and found that Acvrl1, Bmpr1a, and Bmpr2were highly

expressed, whereas Acvr1, Bmpr1b, Acvr2a, or Acvr2b showed

little or no expression (Figures S5A and S5B). Bmpr1a was upre-

gulated in LuMECs, but not in LiMECs, after BMP4 treatment

(Figure S5A). These data, and previous work linking Bmpr1a

and NFATc1 to regulation of hair follicle stem cells (Horsley

et al., 2008), prompted us to further examine Bmpr1a in BASC

differentiation.

To test the role of Bmpr1a in BASC/LuMEC cocultures,

LuMECs were isolated from Bmpr1af/fmice followed by infection

with adenovirus-empty vector (Ad-Emp) or adenovirus-Cre re-

combinase (Ad-Cre). Loss of Bmpr1a expression was confirmed

by quantitative real-time PCR (Figure 6A). BASCs cocultured

withBmpr1a-depleted LuMECs showed impaired alveolar differ-

entiation; BASC/Bmpr1af/f; Ad-Cre LuMEC produced 4.6-fold

more bronchiolar colonies and 1.4-fold fewer alveolar colonies

than controls (Figure 6B). Bmpr1a deficiency led to 2.42-fold

less Tsp1mRNA in Cre-treated Bmpr1af/f LuMECs than controls

and reduced Tsp1 induction up to 12 hr after BMP4 treatment

(Figures 6C and 6D). Finally, BMP4-induced nuclear transloca-

tion of NFATc1 was impaired in Bmpr1a-depleted LuMECs (Fig-
than control during bleomycin injury repair (p < 0.001). All were normalized to Gap

bars indicate SD (**p < 0.001).

(B) Representative GFP images of BASCs cocultured with Tsp1+/+ (top) or Tsp1�

alveolar colony, and the asterisk indicates bronchioalveolar colony. Scale bar, 50

(C) Quantification of colony types from BASCs cocultured with Tsp1+/+ or Tsp1�/

presented are the mean of five independent experiments with triplicate wells. Er

(D) Quantitative real-time PCR analysis for SPC and CCSP from colonies as in (B)

expression in BASC/Tsp1�/� LuMEC cocultures versus BASC/Tsp1+/+ LuMEC coc

of three independent experiments with triplicate wells. Error bars indicate SD (**p

(E) Quantification of colony types from passaged colonies cocultured with Tsp1+

alveolar, n = 460 in Tsp1+/+ and n = 532 in Tsp1�/�; and bronchioalveolar, n =

cocultured with Tsp1�/� LuMECs produced 3.6-fold more bronchiolar colonies a

Tsp1+/+ LuMECs. n, number of colonies scored. Data presented are the mean of

Error bars indicate SD (*p < 0.01).

(F and G) H&E (top left) and IF analysis for CCSP (red), SPC (green), and DAPI (blue

with Tsp1+/+ (F) or Tsp1�/� LuMECs (G). Insets (top right) show high-power view

(H) Quantitative analysis of epithelial structures from (F) and (G). Data presented a

bars indicate SD (*p < 0.01).

See also Figure S3.
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ure 6E). These data supported a model whereby BMP4 activates

calcineurin/NFATc1 signaling through Bmpr1a to induce TSP1

expression in LuMECs.

Given its role in BASC differentiation, we asked whether

Bmpr1a also played a role in lung injury repair. Bmpr1a expres-

sion levels were assayed in LuMECs at various time points

following naphthalene and bleomycin injury. Although there

was no remarkable change after naphthalene, a significant in-

crease in Bmpr1a expression (4.8-fold; p < 0.01) was seen at

14 days following bleomycin treatment (Figure 6F). Changes in

Bmp signaling were also observed during lung epithelial regener-

ation; phosphorylated Smad1/Smad5 and Erk1/Erk2 were de-

tected in LuMECs from uninjured mice and during bleomycin

injury repair, whereas these phosphorylated proteins were

decreased during naphthalene injury repair and undetectable

in LiMECs (Figures S5C and S5D).

We probed epithelial cells as a source of BMP4 after lung injury

and found that in homeostatic conditions, Bmp4 expression was

higher in AT2 cells and BASCs compared to total lung cells (Fig-

ure 6G). Three days after naphthalene treatment, Bmp4 expres-

sion was downregulated in AT2 cells and BASCs, returning to

baseline 14 days after injury (Figure 6G). In contrast, BASCs

expressed 2.7-fold higher levels of Bmp4 14 days after bleomy-

cin compared to controls (p < 0.01), and AT2 cells showed

1.5-fold increased Bmp4 expression 21 days after bleomycin

(p < 0.01 versus PBS) (Figure 6G). These results suggest that

alveolar injury triggers Bmp4 induction in BASCs, AT2 cells, or

other epithelial cells, subsequently upregulating Tsp1 from lung

endothelial cells to control BASC differentiation in a Bmpr1a-

calcineurin-NFATc1-dependent manner.

Altered Bronchiolar and Alveolar Injury Repair in Tsp1

Null Mice
Our studies identify TSP1 as a key regulator of lung stem cell dif-

ferentiation; thus, we tested the effects of Tsp1 deficiency on

bronchiolar epithelial repair. We first confirmed that Tsp1�/�

mice (Lawler et al., 1998) did not exhibit a lung phenotype

without injury (Figure S6A). IF analysis confirmed sufficient club

cell ablation in Tsp1+/+ and Tsp1�/� mice 2 days after naphtha-

lene treatment (Figures 7A and 7B). Club cell numbers remained
dh. Data presented are the mean of samples from three individual mice. Error

/� LuMECs (bottom). Arrowhead points to bronchiolar colony, arrow points to

0 mm.
� LuMECs (n = 605 and 753, respectively). n, number of colonies scored. Data

ror bars indicate SD (*p < 0.01).

. There were 4.8-fold higher levels of CCSP expression and 29.5-fold less SPC

ultures (p < 0.001). All were normalized toGapdh. Data presented are themean

< 0.001).
/+ or Tsp1�/� LuMECs: bronchiolar, n = 471 in Tsp1+/+ and n = 633 in Tsp1�/�;
566 in Tsp1+/+ and n = 651 in Tsp1�/�. Cells from bronchioalveolar colonies

nd 5.7-fold less alveolar colonies (p < 0.01), respectively, than cocultures with

four independent experiments with duplicate wells of five individual colonies.

) in tissue sections from subcutaneous coinjection of bronchioalveolar colonies

(a, bronchiolar; b, alveolar; c and d, bronchioalveolar). Scale bars, 100 mm.

re the mean of two independent experiments with three individual mice. Error
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low 5–7 days after naphthalene in Tsp1+/+ mice, whereas

Tsp1�/� mice exhibited significantly more club cells at these

time points (Figures 7A and 7B). Interestingly, the number of

BASCs peaked earlier in Tsp1�/� mice in response to naphtha-

lene (Figure 7C).

Intratracheal administration of bleomycin selectively ablates

AT2 cells (Aso et al., 1976); thus, we evaluated the requirement

for TSP1 during alveolar injury repair. IF analysis revealed a

4.4-fold reduction in SPC-expressing AT2 cells after bleomycin

treatment in Tsp1�/� mice (Figures 7D and 7E). Numerous bro-

modeoxyuridine (BrdU)-labeled AT2 cells were observed in

wild-type mice, yet Tsp1�/� mice had fewer BrdU-positive cells

(Figure 7D). A slight yet significant increase in fibrosis was seen

in Tsp1�/� mice compared to wild-type mice (Figures 7F and

S6B), consistent with previous reports (Ezzie et al., 2011). The

number of BASCs in Tsp1+/+ mice increased 14 days after

injury and declined to baseline after 28 days (Figures 7G and

7H), as expected (Kim et al., 2005). However, Tsp1�/� mice

showed increased numbers of BASCs through 28 days after

injury (Figures 7G and 7H). These data demonstrate a defect

in alveolar epithelial repair in Tsp1 deficiency and suggest

that BASCs failed to sufficiently differentiate in response to

alveolar injury.

We examined the sufficiency of endothelial-derived TSP1

for BASC alveolar differentiation following bleomycin injury.

Conditioned medium (CM) collected from wild-type LuMECs,

wild-type LiMECs, or Tsp1�/� LuMECs (Figure S6C) was admin-

istered following bleomycin treatment. Tsp1 null mice treated

with wild-type LuMEC CM exhibited AT2 cell regeneration com-

parable to wild-typemice; a 3-fold increase in SPC-positive cells

was observed in CM- versus media-treated Tsp1 null mice

(Figures S6D and S6E). Neither CM from Tsp1�/� LuMECs nor

CM from wild-type LiMECs facilitated AT2 cell regeneration in

Tsp1�/� mice (Figures S6D and S6E). CM from wild-type
Figure 5. BMP4-Induced, NFATc1-Dependent Tsp1 Expression in LuM

(A)Quantitative real-timePCR forBmp4 fromLuMECs isolatedat indicated timepoin

and expression in controls is set to one (1) for comparison. Data presented are the

(B) Representative GFP images of BASC cocultures treated with PBS or BMP4

(middle), or LiMEC (right) are shown. Arrowhead points to bronchiolar colony, an

(C) Quantification of colony types fromBASC cocultures treated with PBS or BMP

PBS; n = 425, BMP4), or Tsp1+/+ LiMEC (n = 376, PBS; n = 334, BMP4). BASC/Ts

colonies than PBS control (p < 0.01) and 3.0-fold less bronchiolar colonies than co

three independent experiments with triplicate wells. Error bars indicate SD (*p <

(D) Quantitative real-time PCR for Tsp1 in LuMECs isolated by FACS (GFP negative

NOG, or BMP4 plus CsA. BMP4 treatment increased Tsp1 levels in LuMECs by 15

presented are the mean of three independent experiments with triplicate wells. E

(E) Immunoblotting for TSP1 in LuMECs treated as indicated. CaNFATc1, LuMEC i

(F) Intracellular calcium measurement. BMP4, VEGF, or ionomycin was loaded at

mobilization was monitored by Fluo-4.

(G) IF analysis for NFATc1 (red) and DAPI (blue) in LuMEC cultures treated as in

(H) Quantification of colony types frompassage of BASC/LuMECbronchioalveolar

or BMP4 plus CsA (n = 392) or cocultured with CaNFATc1-LuMECs (n = 388). Al

(p < 0.01) and 1.4-fold less with CsA (p < 0.01). Bronchiolar colony formation with

CsA (p < 0.01). BASC/CaNFATc1-LuMEC cocultures formed 1.5-fold more alv

compared to BASC/LuMEC. n, number of colonies scored. Data presented are t

bars indicate SD (*p < 0.01; **p < 0.001).

(I) Quantitative real-time PCR using Tsp1 promoter primers and DNA purified from

LuMECs with BMP4 addition showed 8-fold greater Tsp1 enrichment than IgG con

to Gapdh is shown. Data presented are the mean of three independent experime

See also Figure S4.
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LuMECs also reduced fibrosis in Tsp1 null mice (Figure S6F)

and restored BASC numbers comparable to those in wild-type

mice (Figures S6G and S6H). Taken together, LuMEC-derived

TSP1 was sufficient for the repair of alveolar epithelial injury via

regulation of BASC differentiation.

DISCUSSION

We have defined a signaling pathway that specifies lung stem

cell differentiation. Endothelial cells supported BASC differen-

tiation into multiple epithelial lineages in vitro and after subcu-

taneous injection. Using these 3D platforms, we identified a

BMP4-controlled NFATc1-TSP1 axis in lung endothelial cells

that directs BASC differentiation to the alveolar lineage. This

endothelial-epithelial crosstalk is one mechanism by which

lung stem cell differentiation choices are regulated in response

to lung injury in vivo.

The differentiation capacity we uncovered in endothelial cell-

supported 3D cocultures and cotransplantations strengthens

the stem cell identity of BASCs. Single FACS-purified BASCs

were capable of multilineage differentiation. The degree to which

these cells represent dual-positive CCSP/SPC cells in vivo re-

mains anoutstandingquestion. Further interrogation using in vivo

systems to specifically label BASCs in their microenvironment

remains an important goal. This work and previous studies pro-

vide evidence that distinguishes BASCs from other lung stem/

progenitors, making it unlikely that other cell populations contrib-

uted to our findings: basal cells from the upper airways do not

require stromal cells for growth in 3D cultures (Rock et al.,

2009), Sca1-low bronchiolar stem cells do not produce cells

with alveolar phenotypes (Teisanu et al., 2011), and the SPC-

negative integrin-a6b4-positive progenitors may be restricted

to alveolar lineages (Chapman et al., 2011). Direct comparisons

of BASCs with other lung stem/progenitor populations could
ECs Is Required for BASC Alveolar Differentiation

tsafter naphthalene (left) orbleomycin (right) injury.Allwerenormalized toGapdh,

mean of samples from three individual mice. Error bars indicate SD (*p < 0.01).

(50 ng/ml). BASC 3D cocultures with Tsp1+/+ LuMEC (left), Tsp1�/� LuMEC

d arrow points to alveolar colony. Scale bar, 500 mm.

4 with Tsp1+/+ LuMEC (n = 414, PBS; n = 367, BMP4), Tsp1�/� LuMEC (n = 498,

p1+/+ LuMEC cocultures with BMP4 treatment showed 1.6-fold more alveolar

ntrol (p < 0.01). n, number of colonies scored. Data presented are the mean of

0.01).

) after coculture with BASCs in the presence of PBS control, BMP4, BMP4 plus

.5-fold greater than PBS control (p < 0.001). All were normalized toGapdh. Data

rror bars indicate SD (*p < 0.01; **p < 0.001).

nfected with constitutively active form of NFATc1. b-actin is the loading control.

the indicated time (arrowhead) followed by washing (arrow). Induced calcium

(E). Scale bar, 100 mm.

colonies treatedwith PBS (n = 415), BMP4 (n = 385), BMP4 plus NOG (n = 371),

veolar colony formation was 1.6-fold less in BMP4-treated cultures with NOG

BMP4 was increased 7.8-fold (p < 0.001) with NOG and 5.6-fold greater after

eolar colonies (p < 0.01) and 3.5-fold less bronchiolar colonies (p < 0.001)

he mean of three independent experiments with five individual colonies. Error

NFATc1-ChIP in LuMECs after treatments indicated for 30min. NFATc1 ChIP in

trol and 30.8-fold greater than PBS control (p < 0.001). The enrichment relative

nts with triplicate wells. Error bars indicate SEM (**p < 0.001).
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(legend continued on next page)
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reveal that the BMP4-NFATc1-TSP1 signaling axis is broadly

important for differentiation control in the distal lung.

Our results suggest that a BMP4-NFATc1-TSP1 signaling axis

operates among stem cells, epithelial cells, and endothelial cells

to repair lineage-specific injury in an organ-specific context. Our

data and previous reports lead us to hypothesize that the lung

epithelial injury repair signaling cascade begins with sensing

changes in BMP4 and/or other additional molecules expressed

by BASCs and distal lung epithelial cells (Masterson et al.,

2011; Rosendahl et al., 2002; Sountoulidis et al., 2012). BMP4

appears to primarily act in lung endothelial cells by stimulating

calcineurin and altering NFATc1 localization. Phosphorylation

of SMAD1/SMAD5 and ERK1/ERK2 and increased Nfatc1 tran-

script were also detected after BMP4 treatment in vitro and

in vivo, suggesting that canonical Bmp transcriptional responses

also play a role in this setting. Tsp1 expression is upregulated

then secreted by lung endothelial cells signaling back to BASCs.

It remains to be determined which TSP1 receptors and down-

stream signaling molecules regulate alveolar differentiation.

The role of Tsp1 in lung injury repair may also involve interactions

between other cell types aside from endothelial cells, and other

endothelial factors or a structural role from endothelia may also

be critical. Finally, in the absence of a known human BASC

equivalent, it is unknown whether a BMP4-NFATc1-TSP1 path-

way operates in human lungs.

This work reveals that manipulation of the microenvironment

can direct the lineage-specific differentiation of lung stem cells,

an important proof of principle for therapeutic development for

lung diseases. Whereas seminal strides have been made to

differentiate induced pluripotent stem cells into lung cells (Green

et al., 2011; Longmire et al., 2012; Mou et al., 2012), directed dif-

ferentiation to produce a specific lung epithelial lineage is not yet

possible. Our work identifies molecules, such as TSP1, that

could be used to specify alveolar epithelial differentiation from

adult multipotent stem cells. We and others have begun to iden-

tify key differences between organ-specific endothelia that may

reveal additional molecules for differentiation control (Nolan

et al., 2013). Injured or depleted lung epithelial cells are the

hallmark of numerous pulmonary diseases, including alveolar

damage in pulmonary fibrosis and bronchiolar ablation in bron-

chiolitis obliterans. Drugs that promote the relevant lineage-

specific differentiation activity of lung stem cells might be useful

in stimulating the repair of patients’ damaged lung cells. For

example, drugs driving alveolar differentiation might aid patients

with fibrosis, whereas chemicals promoting bronchiolar differen-

tiation may help those patients with bronchiolitis obliterans.

The organ-specific BMP4-NFATc1-TSP1 axis in lung endothelial
(B) Quantification of colony types from BASC cocultures treated with PBS or BM

(n = 456, PBS; n = 441, BMP4). After BMP4 treatment, whereas BASC/Ad-Emp Lu

alveolar colonies (p < 0.01) compared to PBS controls, BASC/Ad-Cre LuMEC prod

of colonies scored. Data presented are the mean of three independent experime

(C) Quantitative real-time PCR for Tsp1 as in (A).

(D) Immunoblotting for TSP1 in Bmpr1af/f; Ad-Emp or Bmpr1af/f; Ad-Cre LuMECs

(E) IF analysis for NFATc1 (red) and DAPI (blue) in Ad-Emp or Ad-Cre LuMEC cu

(F and G) Quantitative real-time PCR for Bmpr1a (black bars) from LuMECs (F) or

(black bars) (G) isolated at indicated time points after naphthalene (G, top) or bleo

of samples from three independent mice. Error bars indicate SD (*p < 0.01).

See also Figure S5.
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cells we defined could be a therapeutic avenue for these and

other numerous lung diseases. Further elucidation of the net-

works that regulate BASCs could identify new potential drug tar-

gets for lung disease in stem cells and their interacting niche

including endothelial cells.

EXPERIMENTAL PROCEDURES

All mice work was approved by the CHB Animal Care and Use Committee,

accredited by AAALAC, and was performed in accordance with relevant insti-

tutional and national guidelines and regulations.

Endothelial Cell Preparation

LuMECs and LiMECs were isolated from 2- to 4-week-old mice by negative

selection with anti-CD45-conjugated magnetic beads and positive selection

with anti-CD31-conjugated magnetic beads. CD31-positive cells were then

amplified in a gelatin-coated culture plate for 3–5 days followed by reselection

with anti-CD31-conjugated magnetic beads. Endothelial cell purity was deter-

mined by IF staining for CD31, VE-Cadherin, and VEGFR2, and cells were used

for experiments between passages 2 and 6. For Ac-LDL uptake, endothelial

cells were incubated with 10 mg/ml Dil-ac-LDL for 2 hr at 37�C followed by

staining with DAPI. For Matrigel tube formation, endothelial cells were seeded

on Matrigel-coated 24-well plates (1 3 105 cells/well), incubated for 1 hr at

37�C, and added fresh medium. One to 3 days after plating, tube formation

was observed.

3D Cocultures and Cotransplantation

Amplified LuMECs/LiMECs were used for 3D cocultures or cotransplantations

of AT2 cells and BASCs or dissociated colonies from BASCs. AT2 cells and

BASCs were isolated from 7- to 10-week-old mice by FACS using pan-

CD45-APC, CD31-APC, Sca1 (Ly-6A/E)-APC-Cy7, EpCAM-PE-Cy7 with

DAPI staining. Freshly isolated cells were mixed with growth-factor-reduced

Matrigel containing LuMECs or LiMECs, and the cell mixtures were plated in

transwell plates or transplanted via subcutaneous injection into nude mice.

For cocultures/cotransplantation of individual colonies, similar-sized individual

colonies were picked under the fluorescence microscope after enzymic diges-

tion. Picked individual colonies were further trypsinized into single cells for

quantitative real-time PCR, passaged for subsequent colony formation, or

transplanted by subcutaneous injection with LuMECs/LiMECs. For ‘‘helper

cell’’ 3D single-cell cultures, freshly isolated EpCAM-positive lung epithelial

cells were irradiated (26 Gy), and 50,000 cells were resuspended with

LuMECs/Matrigel and a single BASC or AT2 cell. For serial passages, day

14 AT2 cell or BASC 3D cocultures were dissociated to generate a single-

cell suspension followed by FACS for GFP. GFP+ cells were resuspended in

fresh LuMEC/Matrigel mixtures. Media for 3D cocultures were replaced every

other day with supplements for up to 14–21 days. Mice coinjected with cells/

Matrigel were euthanized 4weeks after injection for analysis of histopathology.

Preparation of TSP1

Blood was collected from 6- to 8-week-old mice by retro-orbital bleeding and

centrifuged to separate platelets that were activated by incubation with 1 U of

thrombin for 20 min at 37�C. Releasate was then obtained by centrifugation to

obtain TSP1. Releasate was added to 3D coculture of BASCs every other day.
P4 with Ad-Emp LuMECs (n = 423, PBS; n = 388, BMP4) or Ad-Cre LuMECs

MEC generated 3.8-fold less bronchiolar colonies (p < 0.001) and 1.4-fold more

uced bronchiolar and alveolar colonies comparable to PBS controls. n, number

nts with triplicate wells. Error bars indicate SD (*p < 0.01; **p < 0.001).

at indicated time points after BMP4 treatment. b-actin is the loading control.

ltures treated with PBS or BMP4. Scale bar, 100 mm.

Bmp4 from AT2 cells (green bars), BASCs (yellow bars) or total live lung cells

mycin (G, bottom). All were normalized toGapdh. Data presented are the mean
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Lung Injury

In vivo lung injury experiments were conducted in 7- to 10-week-old mice that

received naphthalene (275 mg/kg) via intraperitoneal injection or bleomycin

(0.035 U/mice) via intratracheal injection. CMs were collected from LuMECs/

LiMECs that were incubated in serum-free media for 24 hr following 10-fold

concentration. CM was administered via tail vein injection at a volume of

100 ml every other day for 21 days after bleomycin injection.

ChIP

ChIP assay was performed with LuMECs/LiMECs that were incubated with

serum-free media overnight and were treated with BMP4 (50 ng/ml) or

BMP4 (50 ng/ml) plus NOG (100 ng/ml) for 30 min. After crosslinking, the

sonicated lysate was employed to immunoprecipitation using anti-NFATc1

or anti-mouse IgG with a mix of protein A/G beads.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and one movie and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.12.039.
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Zamponi, R., Gazit, R., Bock, C., Jäger, N., et al. (2011). Lung stem cell self-

renewal relies on BMI1-dependent control of expression at imprinted loci.

Cell Stem Cell 9, 272–281.
Cell 156, 440–455, January 30, 2014 ª2014 Elsevier Inc. 455


	Lung Stem Cell Differentiation in Mice Directed by Endothelial Cells via a BMP4-NFATc1-Thrombospondin-1 Axis
	Introduction
	Results
	Lung Endothelial Cells Support Stem Cell Properties of BASCs
	Endothelial Cells Govern BASC Differentiation in an Organ-Specific Manner
	TSP1 in Endothelial Cells Regulates BASC Differentiation
	BMP4 Induces BASC Alveolar Differentiation in an Organ-Specific Manner
	Bmpr1a Is Required for BMP4-Mediated TSP1 Induction in LuMECs
	Altered Bronchiolar and Alveolar Injury Repair in Tsp1 Null Mice

	Discussion
	Experimental Procedures
	Endothelial Cell Preparation
	3D Cocultures and Cotransplantation
	Preparation of TSP1
	Lung Injury
	ChIP

	Supplemental Information
	Acknowledgments
	References


