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SUMMARY

The strength of conclusions drawn from RNAi-based
studies is heavily influenced by the quality of tools
used to elicit knockdown. Prior studies have devel-
oped algorithms to design siRNAs. However, to
date, no established method has emerged to iden-
tify effective shRNAs, which have lower intracellular
abundance than transfected siRNAs and undergo
additional processing steps. We recently developed
a multiplexed assay for identifying potent shRNAs
and used this method to generate ~250,000 shRNA
efficacy data points. Using these data, we developed
shERWOQD, an algorithm capable of predicting, for
any shRNA, the likelihood that it will elicit potent
target knockdown. Combined with additional shRNA
design strategies, shERWOOD allows the ab initio
identification of potent shRNAs that specifically
target the majority of each gene’s multiple tran-
scripts. We validated the performance of our shRNA
designs using several orthogonal strategies and con-
structed genome-wide collections of shRNAs for hu-
mans and mice based on our approach.

INTRODUCTION

The discovery of RNAi promised a new era in which the power
of genetics could be applied to model organisms for which
large-scale studies of gene function were previously inconve-
nient or impossible (Berns et al., 2004; Brummelkamp et al.,
2002; Chuang and Meyerowitz, 2000; Fire et al., 1998; Gupta
et al., 2004; Hannon, 2002; Kamath et al., 2003; Kambris et al.,
2006; Paddison et al., 2004; Sanchez Alvarado and Newmark,
1999; Svoboda et al., 2000; Timmons and Fire, 1998; Tuschl
et al., 1999; Zender et al., 2008). It quickly became clear that
implementing RNAI, especially on a genome-wide scale, could
be challenging. This was particularly true for applications in
mammalian cells in which discrete sequences, in the form of
small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs),

were used as silencing triggers (Brummelkamp et al., 2002; Elba-
shir et al., 2001; Paddison et al., 2002). The overall degree of
knockdown achieved was found to vary tremendously depend-
ing on the precise sequence of the small RNA that is loaded
into the RNAI effector complex (RISC) (Chiu and Rana, 2002;
Khvorova et al., 2003; Schwarz et al., 2003). However, the nature
of sequence and structural motifs that favor RISG loading and
high turnover target cleavage has yet to be fully revealed
(Ameres and Zamore, 2013).

Early studies aimed at optimizing RNAi in mammals used
endogenous microRNAs as a guide for the design of effective
artificial RNAI triggers (Khvorova et al.,, 2003; Reynolds et al.,
2004; Schwarz et al., 2003; Ui-Tei et al., 2004; Zeng and Cullen,
2003). Canonical microRNAs are processed by a two-step nu-
cleolytic mechanism (Seitz and Zamore, 2006). The initial cleav-
age of the primary microRNA (miRNA) transcript in the nucleus
by the microprocessor yields a short, often imperfect hairpin
loop, the pre-miRNA (Denli et al., 2004; Lee et al., 2003). This
is exported to the cytoplasm, where a second cleavage by Dicer
and its associated cofactors yields a short duplex of ~19-20
nucleotides with two nucleotide 3’ overhangs (Bernstein et al.,
2001; Grishok et al., 2001; Hutvagner et al., 2001; Ketting
etal., 2001; Lund et al., 2004; Yi et al., 2003). This duplex serves
as a substrate for preferential loading of one strand into Argo-
naute proteins in the context of RISC (Hammond et al., 2001;
Hutvagner and Zamore, 2002; Khvorova et al., 2003; Martinez
et al., 2002; Schwarz et al., 2003).

An examination of the sequences of endogenous miRNAs indi-
cated that thermodynamic asymmetry between the two ends of
the short duplex was a strong predictor of which strand would be
accepted by Argonaute as the “guide” (Khvorova et al., 2003;
Schwarz et al., 2008). Applying this insight to artificial triggers,
initially in the form of siRNAs, validated the generality of this
observation, and thermodynamic asymmetry became a key
guiding principle of both siRNA and shRNA design (Reynolds
et al., 2004; Silva et al., 2005). Subsequent studies of the struc-
ture of the Ago-small RNA complex have also indicated a
sequence preference for a 5 terminal U that fits into a binding
pocket in the mid-domain of the Argonaute protein (Seitz et al.,
2008; Wang et al., 2008).

In many ways, siRNAs gain entry into RISC in mammals by
simulating the end product of the two-step miRNA processing
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pathway. shRNAs, which mimic either the primary miRNA or pre-
miRNA, must be processed nucleolytically prior to RISC loading
{Brummelkamp et al., 2002; Cullen, 2006; Paddison et al., 2002).
Therefore, shRNAs are likely subject to additional constraints
that lead to efficient recognition by Drosha and Dicer. We do
not yet understand the selection rules for effective flux through
the miRNA biogenesis pathway and, therefore, cannot predict
ab initio which transcripts will produce small RNAs. However,
studies of Drosha in particular have implicated patterns of con-
servation and base pairing in the basal stem, regions adjacent
to the Drosha cleavage site, as determinants of efficient pre-
miRNA cleavage (Auyeung et al., 2013; Chen et al., 2004; Han
etal., 2006; Seitz and Zamore, 2006). Elements within the hairpin
loop have also been shown to have an impact on both Drosha ef-
ficiency and its site preference (Han et al., 2006; Zhang and
Zeng, 2010).

Several attempts have been made to extract predictive rules
for the design of effective small RNAs from endpoint silencing
data. The first serious attempt applied artificial neural networks
to a set of ~2,000 paired data points, associating the sequence
of siRNA guides with a corresponding knockdown measure-
ment (established using fluorescent reporters) (Huesken et al.,
2005). Experience in the field supported the effectiveness of
BIOPREDSI. However, access to the algorithm eventually
became impossible. The same data set was subsequently
used to produce a second algorithm, Designer of Small Inter-
fering RNA (DSIR), which included additional input variables
{the frequency of each nucleotide, each 2-mer, and each 3-
mer within the guide) (Vert et al., 2006). To accommodate this
large number of parameters, linear modeling was performed
using Lasso regression (a form of linear regression that iteratively
decreases the use of nonpredictive variables in the linear model)
(Tibshirani, 19986).

siRNA design algorithms could be applied for the design of
shRNAs, and these did inform the design of genome-wide
shRNA collections (Berns et al., 2004; Paddison et al., 2004).
However, the prognostic power of siRNA design algorithms
is compromised for shRNA design. shRNAs, expressed from
RNA polll or pollll promoters, reach lower intracellular concen-
trations than transfected, synthetic siRNAs (Berns et al., 2004;
Paddison et al., 2004). Moreover, shRNAs have additional con-
straints for effective processing. Therefore, it was imperative
that shRNA-specific algorithms be developed.

The generation of accurate siRNA design algorithms was only
made possible with the creation of large training data sets. So
far, a corresponding shRNA data set has been lacking. Recently,
we developed a “sensor” method that allows for the parallel
assessment of shRNA potencies on a massive scale (Fellmann
et al, 2011). Using the sensor approach, we interrogated
~250,000 shRNAs for their effectiveness in the reporter setting.
We used this data set to train a machine learning algorithm for
potent shRNA prediction. We tested this algorithm, which we
termed, shERWOOD, both at the level of individual shRNAs and
at the level of optimized shRNA mini libraries. We demonstrated
that, by applying computational shRNA selection in combination
with a set of target selection heuristics and an optimized micro-
RNA scaffold, we are able to create highly potent shRNAs. We built
upon this result to design and construct next-generation shRNA
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libraries targeting the constitutive exomes of mice and humans.
Predictions for other organisms and custom shRNA designs are
also made available via a web-based version of sShERWQOD.

RESULTS

Neighboring Positions of the Target Sequence Are
Predictive of shRNA Strength

As a prelude to creating an shRNA design algorithm, we first
developed a large-scale sensor data set in which shRNA po-
tency was measured and associated with sequence information.
To perform the assay, we synthesized 12 sets of ~25,000 con-
structs that included a doxycycline-inducible shRNA and a
GFP-tagged shRNA target sequence located downstream of a
constitutive promoter (Fellmann et al,, 2011). Libraries were
packaged and infected (at single copy) into a reporter cell line.
In the absence of doxycycline, GFP was detectable in each
cell. However, in the presence of doxycycline, the shRNAs
became expressed, and the resultant GFP signal was reduced
in a manner proportional to shRNA potency. Using fluores-
cence-activated cell sorting, cells with low GFP levels, in the
presence of drug, were gathered and analyzed via next genera-
tion sequencing (NGS) to determine which shRNAs became
enriched (i.e., which shRNAs have high potency). Operating iter-
ative cycles of this assay has been shown to identify extremely
potent constructs (Fellmann et al., 2011).

We next wished to exiract which sequence characteristics
were most predictive of shRNA efficacy. This subset of charac-
teristics could then be employed as inputs during machine
learning. We first developed a method to consolidate the
different sensor data points into a single value for each shRNA
(see Supplemental Information available online). These accu-
rately capture the enrichment pattern of individual iterations of
the sensor in one single value, therefore allowing downstream
machine learning to proceed more easily (Figure 1A). Analysis
of the coefficients used to consolidate the sensor data shows
that information from the final sensor iteration contributes the
most to the final potency value. However, information from the
second iteration is also included (Figure S1A).

To distinguish discretely between strong and weak shRNAs,
we applied an empirical Bayes moderated t test to the shRNA
potency measurements extracted from two biological replicates
(Smyth, 2004). Strong and weak shRNAs were those that were
enriched or depleted, respectively, with a false discovery rate
(FDR) < 0.05.

To test individual nucleotide positions for their predictive ca-
pacity, we compared, at each position in the target sequence,
each nucleotide’s enrichment and or depletion levels in the
potent compared with the weak shRNAs (Figure 1B; Figure S1B;
binomial test, FDR < 0.05; Vacic et al., 2008). In general, low GC
content is predictive of high efficacy, with the exception of the
third nucleotide inside the guide target, which shows a strong se-
lection for cytosine. Also of note is a lack of enrichment for thymi-
dine at the 22" position of the guide target (corresponding to the
first position of the guide). This arose because our input data sets
were derived from shRNAs preselected by DSIR.

We next tested whether any pairs of positions had predictive
capacity for shRNA strength beyond what was expected based
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Figure 1. Identification of Sequence Characteristics Predictive of shRNA Efficacy

(A) shRNA score determination via sensor NGS data. On the left is a heatmap representation of normalized shRNA read counts for each on-dox sensor sort. The
right panel represents shRNA potencies, calculated by extracting the first principal component of the left panel matrix.

(B) A nucleotide logo representing enriched (top) and depleted (bottom) nucleotides (p < 0.05) in potent shRNAs.

(C) A heatmap demonstrating the predictive capacity (with respect to shRNA potency) of each pair of positions within the target region. Heatmap ceils are colored
to represent the number of nucleotide combinations that were significantly predictive (p < 0.05) at each position-pair.

(D) The predictive capacity of each triplet of positions within the target region. Data point colors and sizes represent the number of nucleotide triplets that were

significantly predictive (p < 0.05) at each position triplet.

on their individual predictive power. To calculate a measurement
for each position pair, we applied linear regression to identify
synergistic predictive capacity (p value < 0.05; Supplemental
Experimental Procedures). Following this, each position pair
was assigned a value equal to the sum of nucleotide combina-
tions that were predictive of shRNA potency when assessed at
the two positions (Figure 1C; Figure S1C). For a given position
within the target, the most predictive partner is the neighboring
nucleotide. An exception to this trend is observed in the posi-
tions corresponding to the shRNA guide seed, where predictive
position pairs are also observed in nucleotides separated by up
to four bases.

Finally, we wished to determine whether triplets of positions
showed a similar trend to that observed in the pairwise analysis.
For this, we performed a modified version of the linear regression
tests described above, where triplets instead of pairs of nucleo-
tides were assessed for synergistic predictive capacity. As with
the pairwise analysis, neighboring triplets of positions within the
target show strong predictive power compared with triplets of
nonneighboring positions (Figure 1D). Furthermore, the distance
between predictive triplets is also extended slightly in the guide
seed region of the shRNA.

A Sensor-Based Computational Algorithm to Predict
shRNA Efficacy

Because sequence-based characteristics correlated with
shRNA efficiency, we sought to apply machine leaming to the
sensor-derived efficacy measurements. The goal was to develop
a computational algorithm that would predict, for any target
sequence, the potency of a corresponding shRNA. We reasoned
that the best machine learning tool to apply to this task was
random forest regression analysis. The reasons for this decision
were two-fold. First, there is no decrease in the accuracy of
random forests when the number of input variables is large.
Second, the architecture of the algorithm takes into account
increases in accuracy that can be achieved by analyzing combi-
nations of input variables.

Our training data set was of two distinct types. One comprised
an unbiased set of shRNAs that tiled every nucleotide of nine
genes (Fellmann et al.,, 2011). A second comprised a larger
set of shRNAs preselected by the DSIR algorithm (described
above). We therefore chose to separate data corresponding to
each input class and to train separate forests. We also chose
to separate data based on the 5' nucleotide of the guide. This

was done for two reasons. First, previous studies, supported
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by structural insights, had suggested that the 5' nucleotide of
the guide was a prominent determinant of small RNA potency
(Felimann et al., 2011; Frank et al., 2010; Khvorova et al.,
2003; Reynolds et al., 2004). Therefore, training forests individ-
ually for shRNAs initiating with each base focused the prediction
process on additional determinants. Moreover, the DSIR-based
predictions were already heavily biased toward U and A at the
5 position. In fact, the bias was so strong that we did not
have sufficient data to train 5’'C and 5'G forests for these data
sets. This meant that, in the first pass, we trained six indepen-
dent modules.

In each module, input data were composed of individual base
information as well as all neighboring pairs of bases throughout
the guide sequence. In addition, the set of triplet position/nucle-
otide combinations found to be predictive, as assessed by
linear regression, were also included (Figure 1D). After training
each of the modules, we sought to determine which input vari-
ables were relied most heavily upon. For each module, each
variable was permuted across observations, and the resultant
reduction in predictive capacity was recorded at each regres-
sion tree. The resultant changes were then averaged across
trees, and that mean was normalized by their standard devia-
tion. The triplet variables were heavily relied upon (Figure S2A),
particularly the triplet corresponding to shRNA guide positions
2—4.

To consolidate these modules, a second-tier random forest
was trained using the first-tier outputs, the corresponding
shRNA guide base information, and a set of thermodynamic
properties extracted from each shRNA (e.g., enthalpy, entropy).
We named the compiled algorithm shERWQOOD.

To test the prognostic power of sShERWOOD, we took advan-
tage of the unbiased nature of the tiled shRNA sensor data. For
each of the nine genes represented, we independently trained a
shERWOOD algorithm without the data corresponding to that
gene. We could then test shERWOOD performance against
experimental data in a manner that was not skewed by the use
of those data for training. We saw an overall Pearson correlation
of 0.72 between experimentally derived potency measurements
and computational predictions (Figure 2A). For comparison,
DSIR achieves a correlation of 0.4, and a prior shRNA prediction
algorithm trained on a subset of the sensor data used in
this study achieves 0.56 (Matveeva et al., 2012; Vert et al,,
2006). This indicates that shERWOOD achieves a roughly
180% increase in performance over currently existing siRNA
prediction algorithms and a 126% increase in efficacy over exist-
ing shRNA-specific prediction algorithms.

We supplemented shERWOOD with additional heuristics to
maximize the probability of successfully reducing protein levels
in most cell and tissue types. The complex nature of alternative
splicing patterns provided a strong motivation for directing
shRNAs against constitutive exons. We therefore developed a
strategy that iteratively searches for regions within a gene that
are shared by at least 80% of transcripts (Supplemental Experi-
mental Procedures). This algorithm also tests whether high-po-
tency shRNAs have the potential to cosuppress paralogous
genes. Considered together, these strategies have the potential
to maximize the probability of biologically meaningful results
from studies using shRNAs.
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Benchmarking shERWOOD

To assess the performance of the shERWOOD algorithm, we
felt that it was necessary to test a large number of shRNAs
for their biological effects because one can find anecdotal ev-
idence for excellent performance for nearly any algorithm or
strategy. We therefore chose ~2,200 genes based on their
enrichment in gene ontology (GO) categories likely to impact
the growth and survival of cells in culture (Figure 2B). As con-
trols, particularly for the likelihood of off-target effects, we
included 400 olfactory receptor genes. Olfactory receptors
are expressed only in olfactory neurons, and even then, they
display allelic choice so that only one paralog is expressed
per cell. Therefore, shRNAs targeting olfactory receptors are
highly unlikely to have relevant, on-target biological effects
in any cell line screened in vitro. To benchmark the perfor-
mance of sShERWOOD, we compared a focused mini library
predicted with this algorithm to two widely used genome-
wide collections, namely The RNAi Consortium (TRC) collec-
tion distributed by Sigma-Genosys and the so-called Han-
non-Elledge V3 library distributed presently by GE Dharmacon
(K.C., unpublished data). To produce the shERWOOD-based
library and a deeper simulation of the V3 library, we used either
shERWOOD or DSIR to predict their top 10 scoring shRNAs for
our test genes. The sequences of TRC shRNAs are listed on a
public web portal, and we selected all listed shRNAs for each
gene. In the case of TRC shRNAs, it was necessary to adapt
them to a 22-base pair stem for placement into the miR-30
context.

For each test library, we synthesized 27,000 oligonucleotides
in solid phase on microarrays (Cleary et al., 2004). These were
cleaved, amplified, and cloned directly into a miR-30 scaffold
within a murine stem cell virus (MSCV)-based retroviral vector
without sequence validation. In this arrangement, the primary
shRNA was transcribed from the long terminal repeat (LTR)
promoter, whereas GFP and Neomycin resistance were ex-
pressed separately as a bicistronic transcription unit from the
phosphoglycerate kinase promoter (PGK) (Figure S2D). Pilot
sequencing showed that each library was of similar quality and
representation.

Each library was infected separately into the pancreatic ductal
adenocarcinoma cell line A385. Two days after infection, cells
were collected for a reference time point, and, after ~12 dou-
blings, cells were again harvested for a final time point (Supple-
mental Experimental Procedures). shRNA representation was
determined following amplification of hairpin inserts from
genomic DNA (Sims et al., 2011), and, after processing, shENA
read counts were compared between the initial and final time
points (Supplemental Experimental Procedures; Figures S2E-
S2G).

To enable direct comparisons between libraries, we censored
the shERWOOD- and DSIR-based libraries on a per gene basis
to contain the same number of hairpins as were available in the
TRC library, keeping those with the best algorithmic scores.
We then selected the consensus set of “essential” genes, ac-
cepting only those where at least two hairpins in each library
passed the statistical threshold (FDR < 0.1). As expected, the
resulting set of genes that were important for the growth and
survival of A385 was depleted of olfactory receptor shRNAs
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Figure 2. Construction and Validation of an shRNA-Specific Predictive Algorithm

(A) Gonsolidated cross-validation of predictions versus sensor scores for all shRNAs in the Fellmann et al. (2011) data set (shRNAs are separated by the guide
5 nucleotide).

(B) GO term instances associated with the targeted gene set selected for shRNA validation screens.

(C) GO term instances associated with genes for which at least two hairpins were significantly depleted in each of the TRC, Hannon-Elledge (HE), and shERWOOD
(SW) validation screens.

(D) The percentage of shRNAs targeting consensus-essential genes that were depleted in each of the TRC, HE, and shERWOOD shRNA screens. The plot was
made with the Matlab Boxplot function using default parameters. The edges of the box are the 25" and 75™ percentiles. The error bars extend to the values g3+
w(q3 — g1) and g1 — w(g3 — q1), where w is 1.5 and q1 and g3 are the 25" and 75" percentiles.

(E) Average log-fold change for shRNAs targeting consensus-essential genes (per gene) for each of the TRC, EH, and shERWOOD validation screens. The plot
was made with the Matlab Boxplot function using default parameters. The edges of the box are the 25! and 75! percentiles. The error bars extend to the values
93 + w(g8 - gi) and g1 — w(g3 — q1), where wis 1.5 and g1 and g3 are the 25" and 75™ percentiles.

(F) The percentage of shRNAs corresponding to consensus-essential genes that, for any given shERWOOD score, were depleted in the shERWOOD validation
screen.

(Figure 2C). In contrast, the set of consensus-essential genes  31% of DSIR-predicted sequences and 40% of sShERWOOD-

was enriched for GO terms associated with translation.

To benchmark shRNA selection strategies against each other,
we determined the percentage of shRNAs in each mini library
that scored for each consensus essential gene. For the TRC i-
brary, 24% of shRNAs achieved significant depletion, whereas

based hairpins scored (Figure 2D). We also considered perfor-
mance from the perspective of median log-fold depletion.
For the TRC collection, the average log-fold change was —0.4.
For DSIR, this rose to —0.62, and it increased further to —0.78
for shERWOOD shRNAs (Figure 2E). We note that this type of
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Figure 3. Structure-Guided Maximization of shRNA Prediction Space

(A) Histogram of sensor scores for the top 15 shRNAs as identified by the sShERWOOD-1U strategy, targeting ~2000 druggable genes. Overlaid are the
mean sensor scores for control shRNAs representing poor, medium, potent, and very potent shRNAs (with mean knockdown efficiencies of 25%, 50%, 75%,
and >90%, respectively).

(B) The distribution of shERWOOD-1U prediction scores for shRNAs where endogenous 1U shRNAs are separated from endogenous non-1U shRNAs. Sensor
scores for endogenous 1U and non-1U shRNAs are displayed on the left. The plot was made with the Matlab Boxplot function using default parameters. The

edges of the box are the 25™ and 75™ percentiles. The error bars extend to the values a3 +w(g3 —g1)and g1 — w(g3 — q1), where wis 1.5and g1 and g3 are the
25" and 75" percentiles.

(C) Distribution of sensor scores for shERWOOD-1U-selected shRNAs, separated by endogenous guide 5 nucleotides.

(D) A nucleotide logo representing enriched (top) and depleted (bottom) nucleotides (p < 0.05) in potent sShERWOOD-1U-selected shRNAs (separated by
endogenous guide 5' nucleotides).

(E) The distribution of sensor scores for shRNAs classified as weak and potent by a random forest classifier trained on the shERWOO-1U sensor data.

(F) The distributions of the percentage of shERWOOD- and shERWOOD-1U-selected shRNAs targeting consensus-essential genes that were depleted
in validation screens (left). In addition, normalized log-fold changes of shRNAs, identified under each selection scheme, are displayed (right). The plot
was made with the Matlab Boxplot function using default parameters. The edges of the box are the 25" and 75" percentiles. The error bars extend to the values
a3 + w(g3 — g1) and g1 — w(g3 — g1), where wis 1.5 and q1 and g3 are the 25™ and 75™ percentiles.

To test ultramiR performance, we inserted two shRNAs, tar- RBNA levels were increased significantly relative to levels
geting luciferase or mouse RPA3, into the standard scaffold observed using the standard miR-30 scaffold (Figure 4A).
and into ultramiR. These constructs were packaged and infected ~ Notably, the performance of ultramiR and the previously
in duplicate {multiplicity of infection [MOI] < 0.3) into human described alternate scaffold, miR-E, were indistinguishable
embryonic kidney 293T (HEK293T) cells and the modified DF1  (data not shown).
reporter line used for the sensor screen, respectively (Fellmann To provide a more rigorous test of ultramiR performance, we
et al., 2011). Following selection for singly infected cells, we created a variant of the shERWOOD-selected 1U strategy
analyzed the levels of mature shRNAs by small RNA sequencing  shRNA library and compared its performance to that of
(Malone et al., 2012). shRNA guide counts were normalized the same library in the standard scaffold. Considering the
across libraries by determining their log-fold enrichment relative  consensus-essential gene set, over half of all shRNAs in the li-
to the B6™ quantile of endogenous microRNA levels. A compar-  brary were depleted significantly (Figure 4B). This substantial

ison of the normalized shRNA values indicated that, when improvement (from 42% to 51%, Wilcoxon rank-sum test, p <
shRNAs were placed into the ultramiR scaffold, mature small  0.01) was accompanied by a greater degree of mean log-fold
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Figure 4. Validation of an ARlernative Mir

Scaffold

(A) Relative abundances of processed guide se-
quences for two shRNAs (as determined via small
RNA cloning and NGS analysis) when cloned into
traditional miR30 and ultramiR scaffolds. Values
represent the log-fold enrichment of shRNA guides
with respect to sequences corresponding to the
ten most abundant microRNAs.

(B) Distributions of the percentage of shHER-
WOOD-1U-selected shRNAs targeting con-
sensus-essential genes that were depleted in
validation screens when shRNAs were placed into
miR30 and ultramiR scaffolds. Log-fold changes
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depletion for each construct (from —0.95 to —1.05, Wilcoxon
rank-sum test, p < 0.01).

We also tested a limited number of individual shRNAs for their
potency by measuring reductions in target mRNA levels. We
selected the four shRNAs with the highest shERWOOD scores
for mouse Mgp, Serpine2, and Slpi. These were cloned into
an MSCV-based ultramiR vector in which hygromycin resis-
tance and mCherry were also expressed as a bicistronic tran-
script from the PGK promoter. We also chose to compare these
shRNAs to those developed using previous library construction
strategies. For this, we obtained the current TRC (five shRNAs
per gene) and V.3 Hannon-Elledge (six shRNAs per gene) li-
brary constructs targeting these genes. For the Hannon-Elledge
library, because there were not four precloned shRNAs for each
gene, we assembled the remaining shBNAs that were designed
as part of that library but never constructed. We failed to clone
two constructs (both targeting Slpi) after multiple attempts,
meaning that only four V3 constructs were tested for that
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mean log-ratio

Mgp-shRNA

Slpi-shRNA

for the same constructs are displayed on the left.
The plot was made with the Matlab Boxplot func-
tion using default parameters. The edges of the
box are the 25" and 75™ percentiles. The error
bars extend to the values g3 +w(g3 —gl)and g1 —
w(g3 — g1), where w is 1.5 and g1 and g3 are the
25" and 75" percentiles.
(C) Knockdown efficiencies for shRNAs targeting
the mouse genes Mgp, Slpi, and Mgp. shRNAs
assessed were those contained within the TRC
collection, those initially designed for the Hannon-
Elledge V.3 library, and those designed using the
current strategies. The TRC and Hannon-Elledge
V.3 shRNAs are housed within each library’s
lentiviral vectors, whereas the shERWOOD-1U-
v selected shRNAs are housed within an ultramiR
scaffold in a retroviral vector. Ultramir is constitu-
5 tively expressed from the LTR.
I 8@ (D) The number of differentially expressed genes

- w o~ o
(sauenyy# )’Boj

5'* (>2-fold change and FDR < 0.05) identified through

E 4 g pairwise comparisons of the cell lines corre-
2 g sponding to Mgp and Slpi knockdown by the
0 shERWOOD-1U-selected shRNAs and the TRC

shRNAs 88943 and 66708.

gene. Mouse 4T1 cells were infected at
= single copy, and knockdown was tested
following selection of infected cells.
The TRC library is carried within a vector
lacking a fluorescent marker. We therefore calibrated infection
levels to achieve single copy by comparison with parallel
infections and selections with V3 constructs. The knockdown
efficiency of each shRNA was assessed by comparing tran-
script levels (via quantitative PCR) to those in cells infected
with corresponding empty vectors. The TRC shRNAs showed
modest knockdown in most cases, with only two shRNAs
showing more than 80% of transcript reduction (88943 and
66708, Figure 4C). The Hannon-Elledge V.3 shRNAs produced
relatively modest levels of knockdown. In comparison the
majority of shBNAs designed using the strategies outlined
here reduced target mRNA levels by over 80%, with most
reducing target mRNA levels by more than 90% (Figure 4D).
Considered together, our data indicate that the combined use
of shERWOOD and the ultramiR scaffold consistently produces
highly potent shRNAs.
To assess the specificity of shRNA knockdown, we per-
formed RNA sequencing (RNA-seq) on all cell lines expressing
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shERWOOD-ultramiR shRNAs targeting Slpi and Mgp and the
two cell lines harboring TRC constructs 88943 and 66708, which
target Mgp and Slpi, respectively. Even in the absence of off-
target effects, the silencing of a gene through RNAi will likely
elicit biological effects that result in changes in the abundance
of other mRNAs. Unlike so-called “off-target” effects, pheno-
typic effects that emanate from on-target silencing should be
consistent for all efficacious shRNAs. Therefore, by comparing
the expression profiles of cells harboring different shRNAs corre-
sponding to a single gene, one should be able to infer the scope
of off-target effects for each construct. The shRNAs that show
the greatest propensity to off-targets will be those that create
expression profiles most dissimilar to the mean profile.

When either Mgp or Slpi were silenced using the strategies
outline here, the expression profiles in the resultant lines were
found to be highly similar. Less than 25 genes were altered in
their expression (DESeq, fold change > 2 and FDR < 0.05) be-
tween any pair of corresponding lines. However, when these
were compared with lines that had Mgp or Slpi silenced using
potent TRC constructs, a significant difference in expression
profiles was observed. Over 500 genes are altered in the line
where Mgp has been silenced using the TRC constructs, and
approximately 250 are altered in the line expressing the TRC
Slpi-shRNA (Figure 4D).

These resulis could reflect our current strategies for reducing
off-targeting or our use of a microRNA-based scaffold. Recently,
others have observed strong phenotypic changes, related to mi-
croRNA dysregulation, when U6 driven stem-loop shRNAs were
expressed in cells where the target gene had been deleted (Bask
et al.,, 2014). In contrast, when these same shRNAs were ex-
pressed from a microRNA scaffold, the phenotype was not
observed. Overall, the aforementioned analysis indicates that
shRNAs produced using the strategies outlined in this report,
when expressed in an ultramiR scaffold, show strong knock-
down capacity and limited off-target effects.

DISCUSSION

The application of RNAi in mammalian cells promised a revolu-
tion in understanding gene function and in the discovery and vali-
dation of therapeutic targets. Although the impact of RNAIi has

been enormous, there has also been substantial frustration in at-
tempts to fully realize the potential of this technology. Many

different sequences often need to be tested to obtain one that
potently suppresses expression, a problem that is particularly
acute with shRNAs expressed from single-copy transgenes.
This, and the resulting variability in the quality of publicly avail-
able genome-wide shRNA collections, has caused consterna-
tion, particularly when very similar shRNA screens carried out
by different investigators yield largely nonoverlapping results
(Babij et al., 2011; Luo et al., 2009; Scholl et al., 2009). We tried
to address problems with current shRNA technologies by opti-
mizing target sequence choice and small RNA production.

We leveraged our prior development of a high-throughput
assay for testing shRNA potency to develop a computational
algorithm capable of accurately predicting the outcome of the
sensor screen and, in turn, predicting potentially potent shRNAs.
Through iterative cycles of training and refinement we produced

a tool that permits highly efficacious shRNAs to be generated for
nearly any gene.

We validated the performance of our approach and bench-
marked it against current tools using nonsequence verified,
focused shRNA libraries. Based on our analyses, we can now
generate shRNA libraries where nearly 60% of all hairpins target-
ing essential genes are strongly depleted in multiplexed screens.
This means that, for any library containing, on average, four hair-
pins per gene, most bona fide hits will be identified by multiple
hairpins, greatly reducing the probability of false-positive calls.
Because our libraries were used in their raw forms, we feel that
this is a lower boundary of performance because sequence-vali-
dated and arrayed collections will not contain a mixture of
shRNA variants generated by synthesis and PCR errors.

Given the promise of our approach, we have undertaken the
construction of fourth- and fifth-generation sequence-verified
shRNA libraries targeting the mouse and human genomes.
The fourth generation toolkit takes advantage of shERWOQOD
in a canonical miR-30 scaffold and currently comprises over
75,000 shRNAs targeting human genes and 40,000 shRNAs
targeting mouse genes. The fifth-generation toolkit places
shERWOOD shRNAs in the ultramiR scaffold and is presently
~50% complete.

We have predicted shERWOOD shRNAs targeting constitutive
exons of annotated human, mouse, and rat protein coding
genes, and these are available via a web portal (htip:/
sherwood.cshl.edu:8080/sherwood/). We have additionally
made shERWOOD available as a web-based tool for custom
shRNA prediction, for example for the design of shRNAs for
other model organisms or for specific mMRNA iscforms or non-
coding RNAs.

Overall, we feel that the combination of improvements to
shRNA technologies described herein creates a next-generation
RNAiI toolkit that will produce more reliable outcomes for inves-
tigators, whether applied on a gene-by-gene basis or in the
context of unbiased, genome-wide screens.

EXPERIMENTAL PROCEDURES

Cell Lines

The sensor algorithm was performed using Eco-rtTA-chicken (ERC) cells
(derived from DF-1 chicken embryonic fibroblasts (Fellmann et al., 2011). All
shRNA screens were performed in the pancreatic adenocarcinoma cell line
A385 (Cui et al., 2012). Small RNA analysis for RPA2 shRNAs was performed
in the ERC cell line (Fellmann et al., 2011) and in HEK293T cells for the Renilla
shRNAs. Individual shRNA knockdown experiments were performed in the
4T1 murine mammary cancer cell line (Dexter et al., 1978).

Vectors

All RNAi screens and small RNA cloning experiments were performed with an
MSCV-based retroviral vector harboring a bicistronic transcript (eGFP-IRES-
Neomycin) downstream of the PGK promoter (Figure S2D). Single-target
knockdown experiments for shERWOOD-ultramiR shRNAs were performed
with a similar vector, where Neomycin is replaced with hygromycin, and
enhanced GFP is replaced with mCHERRY. Single-target knockdown experi-
ments for the Hannon-Elledge V3 and TRC shRNAs were performed with the
GIPZ and pLKO.1 vectors, respectively (GE Dharmacon).

shRNA Library Construction

To ensure high-complexity end products, all shRNA libraries were amplified
from raw chip material using 16 separate reactions with 22 PCR cycles. For
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each reaction, 1 pl of 100 uM hip material was used. All transformations were
perfermed with Invitrogen’s MegaX DH10B T1 electrocompetent cells using a
Bio-Rad Gene Pulser Xcell and Bio-Rad Gene Pulser 1 mm cuvettes for elec-
troporation. For each library, a minimum of 25 M successfully transformed
cells were abtained.

shRNA Library Screening

shRNA libraries were packaged using the Platinum-A retrovirus packaging cell
(Cell Biolabs). Cells were cotransfected with glycoprotein G of the vesicular
stomatitis virus and siRNAs targeting the shRNA processing protein Pasha
(QIAGEN). Viral infections were performed at an MOI of 0.3 to ensure a
maximum of one shRNA infection per cell. shRNA representation in the in-
fected cell population was maintained at a minimum of 1,000 infected cells
per shRNA on each passage. All screens were performed in triplicate. Two
days after infection, cells were collected for a reference time point, and, after
~12 doublings, cells were again harvested for a final time point. Neomycin se-
lection began after the initial time point and continued throughout the screens.

shRNA Library Processing and Analysis

Following cell harvests, DNA was extracted with the QIAGEN QlAamp DNA
Blood Maxi kit. For each sample, shRNA molecules were extracted from
genomic DNA in 96 separate 25-cycle PCR reactions where 2 ug of input
DNA was included in each reaction. Following this initial PCR, lllumina
adapters were added via PCR, and samples were processed on the lllumina
Hi-Seq-2.0 platform (read depth was maintained at ~1,000 short reads per
shRNA). Following sequencing, shRNA counts were extracted with the bowtie
algorithm (allowing zero mismatches) and normalized by their total counts.
Log-fold changes demonstrated a GC bias in the control shRNA population
(Figure S2E). To remove this bias, a 1° polynomial was fit to each screen rep-
licate’s log-fold change versus GC content data, and this curve was then sub-
tracted from each data point (Figure S2F). Following this, values were further
normalized so that the control population had a population variance of one.
shRNAs were classified as depleted with an FDR cutoff of 0.1 using an empir-
ical Bayes moderated test (Figure S2G; Smyth, 2004).

Far further details, see the Supplemental Experimental Procedures.
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